First Semester
Second Semester

$\mathbf{1}^{\text {th }}$ Nine Weeks $-4 \mathbf{1}$ days
(August $15^{\text {th }}-$ October $12^{\text {th }}$)
(September $5^{\text {th }}-$ No School)
(October $10^{\text {th }}-$ No School)

7.5A, 7.5B, 7.8C,
7.9B, 7.9C and area of circles to solve problems involving area of composite figures that consist of rectangles, triangles, parallelograms, squares, quarter circles, semicircles, and trapezoids.
7.9D

Surface Area (10 days)

Students solve problems involving the lateral and total surface area of a rectangular prism, rectangular pyramid, triangular prism, and triangular pyramid by determining the area of the shape's net.

Beginning of the School Year (1 Day) BOY Screener (2 Days)
Buffer time (2 Days)

All units emphasize the use of rational numbers and their subsets while building up to solving multistep equations with the use of formulas through Geometry concepts.

$3^{\text {rd }}$ Nine Weeks -47 days
(January $3^{\text {rd }}-$ March $10^{\text {th }}$)
(January $18^{\text {hh }}$ - No School)
(February 20 $0^{\text {th }}-$ PD Day)
(March 13 $3^{\text {th }}-17^{\text {th }}-$ Spring Break)
(March 20 $0^{\text {th }}-$ Teacher Workday)

TEKS

Circles \& Composite Figures (13 days)

Students use models to determine the approximate formulas for the circumference and area of a circle. Students use the relationships from models to connect to the actual formulas for the circumference and area of a circle and apply these formulas to solve problems involving the circumference and area of circles. Students extend previous knowledge of the area of rectangles, parallelograms, trapezoids, and triangles along with the new understandings of the circumference
7.10A, 7.10B,
$7.10 \mathrm{C}, 7.11 \mathrm{~A}$,
7.11B, 7.11C, of rational numbers. Students are expected to fluently add, subtract, multiply, and divide various forms of positive and negative rational numbers that include integers, decimals, fractions, and percents converted to equivalent decimals or fractions.
7.4A, 7.4C, 7.7A

Solving Equations \& Inequalities, and Angle

 Relationships (20 days)Students model and solve one-variable, two-step equations and inequalities with concrete and pictorial models and algebraic representations. Solutions to equations and inequalities are represented on number lines and given values are used to determine if they make an equation or inequality true. Students are expected to write an equation or inequality to represent conditions or constraints within a problem and then, conversely, when given an equation or inequality out of context, students are expected to write a corresponding real-world problem to represent the equation or inequality. Students write and solve equations using geometric concepts, including the sum of the angles in a triangle, complementary angles, supplementary angles, straight angles, adjacent angles, and vertical angles.

Linear Relationships (20 days)

Students use data with two variables, to reexamine constant rates of change and extend their understanding of the constant of proportionality. Students are formally introduced to the slope intercept form of equations, $y=m x+b$, to represent linear relationships. Students are expected to relate the constant rate of change to m, and the y-coordinate, when the x-coordinate is zero, to b in equations that simplify to the form $y=m x+b$. Students represent linear relationships using verbal descriptions, tables, graphs, and equations that simplify to the form $y=m x+b$.

Interim Assessments (4 Days)

Buffer time (3 Days)

Each unit continues to emphasize the use of rational numbers while building up to solving multistep equations. These units are foundational to Algebra concepts with an emphasis on linear relationships specifically in slope-intercept form.

Process Standards: 7.1A, 7.1B, 7.1C, 7.1D, 7.1E, 7.1F, 7.1G

The process standards describe ways in which students are expected to engage in the content. The process standards weave the other knowledge and skills together so that students may be successful problem solvers and use mathematics efficiently and effectively in daily life. When possible, students will apply mathematics to problems arising in everyday life, society, and the workplace.
**All days on units are estimated lengths of time and are subject to change.

