

## AP Biology Year at a Glance (YAG) 2022-2023



| First Semester                       |                                                  | Second Semester                      |                                                        |  |
|--------------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------------------------|--|
| 1 <sup>st</sup> Nine Weeks – 40 days |                                                  | 3 <sup>rd</sup> Nine Weeks – 45 days |                                                        |  |
|                                      |                                                  |                                      |                                                        |  |
|                                      |                                                  |                                      |                                                        |  |
| Big Idea 1:                          | Unit 1: Evolution (16 days)                      | Big Idea 1:                          | Unit 6: Heredity (14 days)                             |  |
| Essential                            | Student will be able to:                         | 1A1 1A2                              | <b>Describe</b> Mendel's law of segregation            |  |
| Knowledge                            | <b>State</b> the two major points Darwin made    | 1A3. 1A4.                            | <b>Distinguish</b> between genotype and                |  |
| (EK):                                | in <i>The Origin of Species</i> concerning the   | 1C2.1C3.                             | phenotype, heterozygous and homozygous.                |  |
| 1A1. 1A2. 1A3.                       | Earth's biota. <b>Explain</b> what Darwin meant  | 1D1.1D2                              | dominant and recessive traits. <b>Use</b> the laws     |  |
| 1A4, 1B1, 1B2,                       | by the principle of common descent and           | ,                                    | of probability to calculate the chances of an          |  |
| 1C1, 1C2, 1C3                        | "descent with modification". Explain what        | Big Idea 2:                          | individual having a specific genotype or               |  |
|                                      | evidence convinced Darwin that species           | 2C1, 2C2,                            | phenotype. <b>Complete</b> genetics problems           |  |
| Big Idea 2:                          | change over time. Using some                     | 2D1, 2D2,                            | related to the condition and patterns of               |  |
| 2B1, 2B2, 2B3,                       | contemporary examples, <b>explain</b> how        | 2D3, 2D4,                            | inheritance discussed. <b>Understand</b> the use       |  |
| 2C1, 2C2, 2E2                        | natural selection results in evolutionary        | 2E1, 2E2, 2E3                        | of the Chi Square test in studying data from           |  |
|                                      | change.                                          |                                      | genetic crosses.                                       |  |
| Big Idea 3:                          |                                                  | Big Idea 3:                          | 0                                                      |  |
| 3D1, 3D2, 3D3,                       | Unit 2: Biochemistry (12 days)                   | 3A1, 3B1,                            | Unit 7: Molecular Genetics (10 days                    |  |
| 3D4, 3E1                             | <b>Identify</b> the 6 major elements found in    | 3B2, 3C2, 3C3                        | Describe the structure of DNA and explain              |  |
|                                      | living things. Describe the role of carbon in    |                                      | what kind of chemical bond connects the                |  |
| Big Idea 4:                          | molecular diversity, its characteristics, and    | Big Idea 4:                          | nucleotides of each strand and what holds              |  |
| EK: 4A1, 4A2,                        | its forms of organization structures.            | 4C2                                  | the two strands together. Describe the                 |  |
| 4A3, 4A4, 4C1,                       | <b>Define</b> monomer, polymer, hydrolysis, and  |                                      | process of DNA replication. Explain the                |  |
| 4B4, 4C3, 4C4                        | dehydration synthesis and give specific          |                                      | processes of transcription, translation and            |  |
|                                      | examples from each of the 4                      |                                      | mRNA editing. Given a sequence of bases in             |  |
|                                      | macromolecule groups. Distinguish                |                                      | DNA, <b>predict</b> the corresponding codons           |  |
|                                      | between endergonic/exergonic reactions,          |                                      | transcribed on mRNA and the                            |  |
|                                      | anabolic/catabolic pathways,                     |                                      | corresponding anticodons of tRNA. Explain              |  |
|                                      | kinetic/potential energy, and open/closed        |                                      | how the genetic code is redundant and                  |  |
|                                      | systems. <b>Describe</b> an enzyme in terms of   |                                      | universal. Using the <i>trp operon</i> as an           |  |
|                                      | its function in chemical reactions and           |                                      | example, <b>explain</b> the concept of an operon       |  |
|                                      | substrate/product relationships.                 |                                      | and the function of the operator, repressor            |  |
|                                      |                                                  |                                      | and corepressor. <b>Distinguish</b> between            |  |
|                                      | Unit 3: Cellular Biology (12 days)               |                                      | structural and regulatory genes. <b>Describe</b>       |  |
|                                      | <b>Identify</b> the structure, composition, and  |                                      | the <i>lac operon</i> functions. <b>Understand</b> how |  |
|                                      | function of cell organelles. Compare and         |                                      | restriction enzymes and gel electrophoresis            |  |
|                                      | <b>contrast</b> the structures of eukaryotic and |                                      | are used to isolate DNA fragments                      |  |
|                                      | prokaryotic cells. Identify the components       |                                      |                                                        |  |
|                                      | of the fluid mosaic model of the cell            |                                      | Unit of Population Genetics (7 days)                   |  |
|                                      | (isoosmotic) hypertonia (hypersonatic)           |                                      | theorem use it to colculate allele and                 |  |
|                                      | (isoosmotic), hypertonic (hyperosmotic),         |                                      | geneture frequencies <b>Explain</b> hour genetic       |  |
|                                      | and hypotonic (hypotosinouc) solutions           |                                      | drift gene flow mutation nonrandom                     |  |
|                                      | and predict the path of movement of water        |                                      | mating and natural soloction can cause                 |  |
|                                      | and solutes in given examples. <b>Relate</b>     |                                      | microevolution <b>Cive</b> the cause of genetic        |  |
|                                      | and water notential <b>Describe</b> the three    |                                      | variation in a nonulation <b>Fynlain</b> the           |  |
|                                      | main stages of cell signaling <b>Describe</b>    |                                      | concept of relative fitness and its role in            |  |
|                                      | how signal information is transduced into        |                                      | adaptive evolution <b>Describe</b> what                |  |
|                                      | cellular responses in the cytoplasm and in       |                                      | selection acts on and what factors                     |  |
|                                      | the nucleus.                                     |                                      | contribute to the overall fitness of a                 |  |
|                                      |                                                  |                                      | genotype, <b>Distinguish</b> between anagenesis        |  |
|                                      |                                                  |                                      | and cladogenesis. <b>Distinguish</b> between           |  |
|                                      |                                                  |                                      | prezygotic and postzygotic isolating                   |  |
|                                      |                                                  |                                      | mechanisms.                                            |  |
|                                      |                                                  |                                      |                                                        |  |
|                                      |                                                  |                                      |                                                        |  |



## AP Biology Year at a Glance (YAG) 2022-2023



| 2 <sup>nd</sup> Nine Weeks – 43 days                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 <sup>th</sup> Nine Weeks – 45                                                                                                       | 5 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Big Idea 2:<br>2A1, 2A2, 2A3,<br>2C1, 2C2, 2D1,<br>2D2, 2D3<br>Big Idea 3:<br>3A1, 3A2, 3A3,<br>3A4, 3C1, 3C2 | <ul> <li>Unit 4: Celular Energetics (12 days)</li> <li>Describe the role of respiration in the cell's energy cycle. Define cellular respiration, glycolysis, citric acid cycle, and electron transport. Identify the general reactants and products of glycolysis, citric acid cycle and oxidative phosphorylation. Compare the end products of aerobic and anaerobic respiration and identify the types of organisms employing each.</li> <li>Summarize the light reactions with an equation and describe where they occur. Describe important differences in chemiosmosis between oxidative phosphorylation in mitochondria and photophosphorylation in chloroplasts.</li> <li>Summarize the carbon-fixing reactions of the Calvin-Benson cycle and describe changes that occur in the carbon skeleton of the intermediates.</li> <li>Unit 5: Cellular Reproduction (11 days) List the stages of the cell cycle and describe the sequence of events and activities of these stages. List the phases of mitosis proper, describe the events characteristic of each phase and be able to recognize a diagram or micrograph of each stage. Identify factors which stimulate or inhibit cell division. Explain how cancerous cell division is different from normal cell activity. Distinguish between sexual and asexual reproduction. Compare the chromosomal contents of haploid and diploid cells. Indicate where mitosis and meiosis would occur in a given organism. List the phases of meiosis, describe the events that characterize each phase and be able to recognize these phases in diagrams.</li> <li>Fall Semester Final Exam Review and Exams (6 days)</li> </ul> | Big Idea 2:<br>2C1, 2C2,<br>2D1, 2D2,<br>2D3, 2D4,<br>2E1, 2E2, 2E3<br>Big Idea 4:<br>4A5, 4A6,<br>4B1, 4B2,<br>4B3, 4B4,<br>4C3, 4C4 | <ul> <li>Unit 9: Simple Life Forms (16 days)</li> <li>Distinguish between phylogeny and systematics. Distinguish between systematics and taxonomy. Define the parts and describe the interrelationships within a cladogram. Explain how a cladogram is constructed. Compare DNA and RNA viruses; identify the structural components and compare the reproductive cycles of viruses. Describe the general characteristics of bacteria. Explain the significance of bacteria in the earth's ecosystem.</li> <li>Unit 11: Ecology (8 days)</li> <li>Distinguish between the six increasingly comprehensive levels of ecological study.</li> <li>Distinguish between the exponential model and the logistical model of population growth (include a graph that illustrates both models). Compare and contrast K-selection and r-selection with reference to selection for life history traits.</li> <li>Explain how age structure, generation time, and sex structure of populations can effect population growth. Describe the recorded human population growth and discuss the estimates for human carrying capacity. Discuss the modes of interspecific interactions between species and how they affect population density. Distinguish between a food chain and a food web. Include a list of the 5 trophic levels.</li> <li>Compare and contrast primary succession and secondary succession. Explain the two components that contribute to the biodiversity of a community. List the 4 biogeochemical cycles and describe the importance of each within an ecosystem.</li> <li>Explain 3 impacts humans have on ecosystems and describe what is meant by biological magnification with reference to toxins.</li> <li>Advanced Placement Exam Preparation and Exam (13 days)</li> </ul> |



## AP Biology Year at a Glance (YAG) 2022-2023



## Resources

| 1st Nine Weeks              | 2nd Nine Weeks              | 3rd Nine Weeks              | 4th Nine Weeks              |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Biology Campbell 10 Edition |